

Graph Neural Networking challenge 2023:

Building a Network Digital Twin using data from real networks

https://bnn.upc.edu/challenge/gnnet2023

Carlos Güemes, Prof. Albert Cabellos

{carlos.guemes, alberto.cabellos}@upc.edu

Barcelona Neural Networking center

Universitat Politècnica de Catalunya

July 3rd 2023

What is the Graph Neural Networking challenge?

Graph Neural Networking challenge

Series of annual competitions on Graph Neural Networks applied to Networking

- Each edition brings a fundamental challenge on GNNs applied to Computer Networks:
 - Graph Neural Networking challenge 2020: Modeling QoS-aware queue scheduling policies at networks.
 - Graph Neural Networking challenge 2021: Creating a Scalable Network Digital Twin
 - Graph Neural Networking challenge 2022: Improving Network Digital Twins through Data-centric AI

Graph Neural Networks are becoming a hot topic in networking! It is the first (and the only) competition on GNNs applied to computer networks

ITU AI/ML in 5G challenge

• Organized as part of the ITU AI/ML in 5G challenge

 Several problem statements on AI/ML applied to networks, one of them is the Graph Neural Networking challenge

Problem statement: Creating a <u>Network Digital Twin</u> with <u>Real Network Data</u>

Cash Prizes: 1st Prize: 2000 EUR 2nd Prize: 500 EUR What is a Network Digital Twin?

What is a Digital Twin?

• A digital twin is a <u>virtual replica</u> of a physical object or process

- It permits to simulate the behavior of a physical system under certain input conditions:
 - What will happen if there is a specific failure? (e.g., in the electrical system)
 - What happen if I make a change in the object? (e.g., new wing design)

What is a Network Digital Twin?

- A Network Digital Twin is a <u>virtual replica</u> of a physical network
- It enables to reproduce the behavior of the network under certain what-if scenarios:
 - What happens if I change the configuration?
 - What happens if there is a random failure?

Building a Network Digital Twin

What are Graph Neural Networks?

GNN are the next big thing in AI

- A Graph Neural Network (GNN) is a class of artificial neural networks for processing graph-data [1]
- Top trends in Graph Machine Learning in 2020 "New cool applications of GNN" [2]
- GNN related publications in networking (e.g,. SIGCOMM 2021 [4])

- [2] <u>https://towardsdatascience.com/top-trends-of-graph-machine-learning-in-2020-1194175351a3</u>
- [3] <u>https://medium.com/mlreview/machine-learning-on-graphs-neurips-2019-875eecd41069</u>

[4] Wang, Xiaojian, Jingyuan Wang, and Ke Tang. "Interpreting Deep Learning Model Using Rule-based Method." *arXiv preprint arXiv:2010.07824* (2020).

State-of-the-Art Network Digital Twins?

13

Note that configuration and traffic con be obtained via a standard Telemetry and Management platforms

Building a Network Digital Twin

Building a Network Digital Twin

Building a Network Digital Twin using GNNs

- RouteNet-Fermi* is the outcome of the knowledge gathered after three editions of the GNN challenge
- Capabilities:

Networking (2023).

- Scale to topologies 100x larger than these seen in training
- Supports arbitrary scheduling policies
- Supports traffic models as characteristics of the underlying interarrival distribution
 - E.g, Poisson traffic is described by its $\,\lambda$

- Datasets to train RouteNet-Fermi have been obtained from simulation
 - Omnet++
- Traffic is generated using stationary traffic distributions
 - Poisson, On-off, etc
- The moments of such distributions where used as input to RouteNet
 - Example: λ in the case of Poisson

Datasets from real-networks and packet-traces

- We have built a dataset from a real network
 - 2x48-port switches
 - 8xHuawei NetEngine 8000 M1A
 - Traffic generated with T-Rex
 - Delay measured with Mellanox ConnectX-5 cards
- Traffic is measured at the packetlevel

Problem statement: Creating a <u>Network Digital Twin</u> with <u>Real Network Data</u>

Cash Prizes: 1st Prize: 2000 EUR 2nd Prize: 500 EUR

Graph Neural Networking Challenge 2023

- The challenge is to build a Network Digital Twin that can estimate perflow mean delay based on the input per-flow packet-trace.
- Dataset is obtained from a real-network.

- Testbed includes:
 - Traffic generator (T-Rex)...
 - sends traffic through a set of Routers...
 - that are connected via 2 switches...
 - Traffic is addressed towards the final destination router...
 - …and captured by the Capture server. Then the per-flow delay is computed.

Topology and physical path traversed by the flows

Baseline: RouteNet-Fermi

- Open-source implementation in tensorflow found a: <u>https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2023_RealNetworkDT</u>.
- Modify the baseline or start from scratch
 - Already supports the physical topology (L2 and L3) of the testbed
- RouteNet-Fermi **does not:**
 - Support packet traces as input
 - Real-world networks characteristics

Baseline has 35% MAPE with the datasets

...

Flow n

Per-flow (src-dst) packet trace Trace includes per-packet timestamp and size

- Dataset includes ≈10.000 samples
 - 4227 samples Constant Bit-Rate samples and MultiBurst
 - 4388 samples MultiBurst
- Each sample contains:
 - Flow information: distribution parameters, number of packets sent, packet size
 - Path information: network routing and physical path
 - Topology information (router connections, link capacity)
 - Packet-level traces
 - Performance information (only in training dataset): average flow and path delay, jitter, packet loss rates

Dataset

• CBR: traffic is sent in short and intense bursts so that the average bit rate is equal to the desired bit rate

• Multiburst: burst traffic defined by three parameters:

• In both cases the packet size is constant

- Both dataset combined are **427.43GB** in size
 - Because we are publishing packet-traces
- Both datasets can be downloaded at: <u>https://bnn.upc.edu/challenge/gnnet2023/dataset/</u>
- Dataset is split onto (aprox.) 5GB files

You can **start participating** with just **one file**

- At the end of the challenge (Oct 2nd), we will evaluate participants' solutions on a **test** • dataset. We will only release input labels, output labels will be hidden.
- The test dataset will follow similar distributions to the training dataset (released at the beginning)
- The evaluation phase lasts 15 days, and it is made automatically in our evaluation platform
- Participants will be ranked based on the MAPE (accuracy) of their solutions in the test dataset. n . М

$$APE = \frac{100\%}{n} \sum_{i=1}^{\infty} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

Participants will see the ranking in real-time

After the evaluation...

- **Provisional ranking** with the scores of all teams
- We will ask top-5 teams for:
 - Source code of their proposed solution
 - A short report describing their solution (1-3 pages)

- We will validate the top-5 solutions to check that they comply with all the rules
- We will not publish the solutions and if asked, we'll be happy to sign an NDA

Quick summary

Main resources:

- RouteNet-Fermi as baseline
 - You can extend it, you can came up with your own solution from scratch
- Dataset
- Quick-start tutorial ۲
- Mailing list for Q&A from participants (support from organizers)

Final outputs from participants:

- Source code of their proposed solution ۲
- A short report describing their solution (1-3 pages)

Expected outcomes:

• First Network Digital Twin trained with a dataset from a real-world network

Graph Neural Networking Challenge

Graph Neural Networking challenge 2023:

Building a Network Digital Twin using data from real networks

https://bnn.upc.edu/challenge/gnnet2022

Registration is mandatory

Timeline

- Challenge duration: June-Nov 2023
- **Open registration:** June 7th-Sep 30th
- Release of tools and validation dataset: June 30th
- Score-based evaluation phase: Oct 2nd-Oct 17th 2023
- Provisional ranking of all the teams: Oct 18th 2023
- Top-5 teams submit the dataset, code and documentation: Nov 1st 2023
- Final ranking and official announcement of top-3 teams: Nov 2023
- Best solutions pitch in a 3-day event end of to determine the finalists: 28 30 November 2023
 Award ceremony and presentations: December 13th, 2023

Graph Neural Networking challenge 2023

https://bnn.upc.edu/challenge/gnnet2023/

Problem statement: Creating a <u>Network Digital Twin</u> with <u>Real Network Data</u> Cash Prizes: 1st Prize: 2000 EUR 2nd Prize: 500 EUR

 1.- Register at the challenge website
 2.- Download the dataset (just the first two files)
 3.- Download the baseline (RouteNet-Fermi) and <u>start coding</u>

Graph Neural Networking challenge 2023: Building a Network Digital Twin using data from real networks

- We recommend all participants that they start from the open-source baseline at <u>https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2023_RealNetworkDT</u>.
- The repository also includes a guide in how to modify different aspects of the baseline.
- We will proceed now with a demonstration that will cover the following topics:
 - Downloading the dataset
 - How process dataset samples from its raw files into a Tensorflow compatible format
 - How to extract new features (through an example: extracting the Inter-Packet Gap)

Graph Neural Networking challenge 2023:

Building a Network Digital Twin using data from real networks

https://bnn.upc.edu/challenge/gnnet2023

Carlos Güemes, Prof. Albert Cabellos

{carlos.guemes, alberto.cabellos}@upc.edu

Barcelona Neural Networking center

Universitat Politècnica de Catalunya

July 3rd 2023

Backup slides

Digital Twins can be applied to many fundamental networking applications*

Network Optimization and What-if analysis

- What happens if we re-route traffic on another path? (Traffic Engineering)
- Can I support new user SLAs with the current resources?

Network Planning:

• Which is the best network upgrade within a limited budget?

Troubleshooting:

- There was a temporary service disruption that affected some SLAs:
- What was the root cause?
- Can we find a way to prevent this in the future? (*e.g.*, add link redundancy)

Network Digital Twin: Context

Is this a new concept?

What about the existing literature on network modeling? *(e.g., network simulators, analytical models)*

Network Digital Twin: Context

Is this a new concept?

What about the existing literature on network modeling? *(e.g., network simulators, analytical models)*

• Network Digital Twins:

- Renovated concept of classical network modeling with the ambition of achieving <u>accurate real-time</u> <u>digital replicas</u> of the network
- Machine learning (ML) is promising for building accurate and lightweight data-driven network models

