Technical Report: RouteNet-Fermi

Miquel Ferriol-Galmés, José Sudrez-Varela, Jordi Paillisé-Vilanova, Pere Barlet-Ros, Albert Cabellos-Aparicio
Barcelona Neural Networking Center, Universitat Politecnica de Catalunya, Spain
Email: {miquel.ferriol, jose.suarez-varela, jordi.paillisse, pere.barlet, alberto.cabellos}@upc.edu

I. INTRODUCTION

This technical report is intended for participants of the
Graph Neural Networking challenge 2022 (https://bnn.upc.
edu/challenge/gnnet2022). We present RouteNet-Fermi, a cus-
tom Graph Neural Network (GNN) for network performance
evaluation. This model has a network state description as input,
and it produces estimates of flow-level performance metrics as
output, such as delay, jitter, or loss (see Fig. 1).

We have tested the capability of this GNN model to scale
to samples of larger networks than those seen during training.
To this end, we have trained RouteNet-Fermi with a large
dataset with thousands of samples of networks up to 10 nodes.
After training, we have validated that the model produces
accurate per-flow delay estimates on the validation dataset
(Mean Relative Error < 5%). The validation dataset includes
samples from networks up to 300 nodes.

II. ROUTENET-FERMI

This section describes the internal GNN architecture of
RouteNet-Fermi (hereafter, RouteNet-F). This GNN-based
model implements a custom three-stage message passing al-
gorithm that represents key elements for network modeling
(e.g. topology, queues, traffic flows). RouteNet-F supports a
wide variety of features present in real-world networks, such
as multi-queue QoS scheduling policies, or complex traffic
models.

Figure 1 shows a black-box representation of RouteNet-F.
The input of this model is a network sample, defined by: a
network topology, a routing scheme (flow-level), a queuing
configuration (interface-level), and a set of traffic flows char-
acterized by some parameters. As output, the model produces
estimates of relevant performance metrics at a flow-level
granularity (e.g., delay, jitter, loss). Participants of the Graph
Neural Networking challenge 2022 will use this model to
predict the mean per-packet delay on source-destination flows.

RouteNet-F is based on two main design principles:
(i) finding a good representation of the network components
supported by the model (e.g., traffic models, routing, queue
scheduling), and (i7) exploit scale-independent features of
networks to accurately scale to larger networks unseen during
training. These two aspects are further discussed in the two
next subsections.

A. Representing network components and their relationships

First, let us define a network as a set of source-destination
flows F = {f; i € (1,..,n5)}, a set of queues
on Q@ = {gj j € (1,..,n4)}, and a set of links

Topologyh

ConfigurationP Ro uteNet_F

Routing (flow-level)
Scheduling (interface-level) GNN model

Traffic model
(flow-level)

Figure 1. Black-box representation of RouteNet-F.

Performance metrics
(e.g., delay, jitter, loss)

L={lx:ke(l,...,m)}. According to the routing configu-
ration, flows follow a source-destination path. Hence, we
define flows as sequences of tuples with the queues and links
they traverse f;={(q"!, 1), .., (¢"M 1%M)}, where M is
the path length of the flow (number of links). Let us also
define Q7 (g;) and Ls(lx) as functions that respectively return
all the flows passing through a queue g; or a link I;. Also,
L,(l)) is defined as a function that returns the queues ¢;, € Q
injecting traffic into link [, — i.e., the queues at the output port
to which the link is connected.

Following the previous notation, RouteNet-F considers an
input graph with three main components: (i) the physical
links £ that shape the network topology, (ii) the queues Q
at each output port of network devices, and (ii¢) the active
flows F in the network, which follow some specific src-dst
paths (i.e., sequences of queues and links). Traffic in flows
is generated from a given traffic model. From this, we can
extract three basic principles:

1) The state of flows (e.g., delay, throughput, loss) is af-
fected by the state of the queues and links they traverse
(e.g., queue/link utilization).

2) The state of queues (e.g., occupation) depends on the state
of the flows passing through them (e.g., traffic volume,
burstiness).

3) The state of links (e.g., utilization) depends on the states
of the queues that can potentially inject traffic into the
link, and the queue scheduling policy applied over these
queues (e.g., Strict Priority, Weighted Fair Queuing).

Formally, these principles can be formulated as follows:

=Gy Py i) (D)
th :GQ(h’f17"'7hfI)’ fl EQf(Qj) (2)
hl;c = Gl(h417~'~7th)v g5 € Lq(lj) @)

Where G ¢, G4 and G are some unknown functions, and h ¢,
h, and h; are latent variables that encode information about
the state of flows F, queues 9, and links £ respectively. Note
that these principles define a circular dependency between the

https://bnn.upc.edu/challenge/gnnet2022
https://bnn.upc.edu/challenge/gnnet2022

three network components (F, Q, and £) that must be solved
to find latent representations satisfying the equations above.

To solve the circular dependencies defined in Equations
(1)-(3), RouteNet-F implements a three-stage message passing
algorithm that combines the states of flows F, queues Q, and
links £, and updates them iteratively. Finally, it combines these
states to estimate flow-level delays. Algorithm 1 describes the
architecture of RouteNet-F.

First, hidden states hy¢, h,, and h; are initialized using
the functions HSy, HS,, and H.S respectively (lines 1-3).
These functions encode the initial features xy, x4, and x;
into fixed-size vectors that represent feature embeddings. The
initial features of flows x; are defined as an n-element vector
that characterizes the flow’s traffic. For example, this vector
includes the average traffic volume transmitted in the flow A,
and some specific parameters of the traffic model, such as ¢,
and t,ry for On-Off traffic distributions. We set the initial
features of links «; as: (¢) the link load x;,,,, and (ii) the
scheduling policy at the output port of the link (FIFO, Strict
Priority, Weighted Fair Queuing, or Deficit Round Robin).
For the scheduling policy, we use one-hot encoding. The
calculation of the link load z;,,,, is defined in more detail later
(Sec. II-Bl). Lastly, the initial features of queues x, include:
(1) the buffer size, (i7) the queue order/priority level (one-
hot encoding), and (i7i) the weight (only for Weighted Fair
Queuing or Deficit Round Robin configurations).

Once all the hidden states are initialized, the message pass-
ing phase starts. This phase is executed for T iterations (loop
from line 4), where 7' is a configurable parameter of the model.
Each message passing iteration is divided into three different
stages, which represent respectively the message exchanges
and updates of the hidden states of flows h; (lines 5-10),
queues h, (lines 11-14), and links h; (lines 15-19).

Finally, the loop from line 20 computes the flow-level
delay estimates produced by the model. Here, function Ry,
(line 23) represents a readout function that is individually
applied to the hidden states of flows as they pass through a
specific link (h ;). The output of this function is the effective
queue occupancy seen by the flow at that link. Note that
this effective queue occupancy can be different for different
flows depending on their traffic properties (e.g., traffic volume,
burstiness). Lastly, the estimated effective queue occupancies
are used to compute the final flow-level delay estimates §,.
This calculation is described in more detail later (Sec. II-B2).

B. Scaling to larger networks: scale-independent features

Data-driven models typically need to see edge cases that
are not commonly found in real-world production networks
(e.g., link failures). This means that collecting data directly
from production networks would imply testing configurations
that might break the correct operation of the network. As a
result, data-driven network models should be typically trained
with data from controlled network testbeds. However, network
testbeds are usually much smaller than real networks. In this
context, it is essential for our model to effectively scale to
larger networks than those seen during the training phase.

Algorithm 1 Internal architecture of RouteNet-F.
Input: F, Q, L, x5, x4, T,
Output: 3¢,

1: for each f ¢ F do h(} «— HSy(xy)

2. for each ¢ € Q do h) «+ HS,(x,)

3: for each [€ £ do h) « HS;(z;)

4: for t = 0 to T-1 do > Message Passing Phase

5: for each f € F do > Message Passing on Flows

6: o([-,]) + FRNN(h'}, D > FRNN Initialization

7: for each (¢,1) € f do

8: h; < O([hL, hY]) > Flow: Aggr. and Update

9: Fn?fql — h; ! > Flow: Message Generation
t+1 t

10 h™ «— hY%,

11: for ea(t:h 1q € Qdo 1 > Message Passing on Queues

12: MqJr «— Zfle(q) mftz > Queue: Aggregation

13: Rl Uy (hG, Myt > Queue: Update

14: ﬁzfﬁl — hf1+1 > Queue: Message Generation

15: for each [€ L do > Message Passing on Links

16: V() + LRNN(h!,") > LRNN Initialization

17: for each ¢ € Ly(1) do

18: hl « W(mith) > Link: Aggr. and Update

19: hiT! < n

> Flow: Readout

20: for each f € F' do
g > Initializing the flow delay

21: Jr, =0
22: for each (g,1) € f do

23: dg = Ry, (R})/, > Queueing delay
24: dy = T, /:zzlC > Transmission delay
25: dlink == dq + flt

26: fg = U5y + diink > Sum of link delays along the flow

It is well-known that GNN models have an unprecedented
capability to generalize over graph-structured data [1], [2].
In the context of scaling to larger graphs, it is also known
that GNNs keep good generalization capabilities as long as
the spectral properties of graphs are similar to those seen
during training [3]. In our particular case, the internal message
passing architecture of RouteNet-F accurately generalizes to
graphs with similar structures (e.g., a similar number of queues
at output ports, or a similar number of flows aggregated
in queues). In practice, creating a representative dataset for
RouteNet-F in small network topologies does not imply any
practical limitation to then achieve good generalization prop-
erties to larger topologies.

However, scaling to larger networks often entails more
aspects beyond the topology size. In particular, there are two
main properties that we can observe as networks become
larger: (i) higher link capacities, as core links of the network
typically aggregate more traffic, and (ii) different flow-level
delay distributions, as end-to-end paths are larger and they can
traverse links with higher capacities. This requires devising
mechanisms to effectively scale on these two features.

1) Higher link capacities: In RouteNet-F (Algorithm 1),
the direct way to represent the link capacity x;, would be as an
initial feature of the links’ hidden states x;. However, the fact
that «;, would be encoded as a numerical input value would
then introduce inherent limitations to scale to larger capacity
values. Indeed, scaling to out-of-distribution numerical values

is recognized as a generalized limiting factor among all neural
network models [4], [5].

Our approach is to exploit particularities from the net-
working domain to find scale-independent representations that
can define link capacities and how they relate to other link-
level features that can affect network performance (e.g., the
aggregated traffic on links). Inspired by traditional Queuing
Theory (QT) models, we aim to encode in RouteNet-F the
relative ratio between the arrival rates on links (based on the
traffic aggregated in the link), and the service times (based
on the link capacity). This enables us to infer the output
performance metrics of the model from scale-independent
values. As a result, instead of directly using the numerical
link capacity values, we introduce the link load x;,,,, in the
initial feature vector of links x;. Particularly, we compute the
link load as follows:

1
Tltons = 7~ >N)

¢ feLy(ly)

Where Ay is the average traffic volume of the flows that
traverse the link /;, and z;_ is the link capacity. In other
words, we compute the link load as the summation of all the
traffic that would traverse the link without considering possible
losses, and then divide it by the link capacity. Then, through
the iterative message passing process, the GNN model should
be able to update the load values after estimating the losses.

2) Different flow-level delay distributions: The previous
mechanism enables to keep scale-independent features along
with the message-passing phase of our model (loop lines 4-19
in Alg. 1), while it is still needed to extend the scale indepen-
dence to the output layer of the model. In this report, we focus
on scale-independence for the case of predicting flow mean
delays. Note that in larger networks, delay values can vary
with respect to those seen during training in smaller networks.
This is because flows can cross links with higher capacities,
or because flows can potentially traverse larger paths. This
again poses the challenge of generalizing to out-of-distribution
delay values. RouteNet-F overcomes this potential limitation
by inferring delays indirectly from the mean queue occupancy
on forwarding devices. Specifically, the model infers the flow
delay as a linear combination of the estimated queuing delays
(line 23) and the transmission delays after crossing a link
(line 24).

We call the values produced by the Ry, function the
effective queue occupancy, which is defined as the mean queue
occupancy experienced by a given flow f; as it passes through
a specific forwarding device. More precisely, this value is the
average number of bits that have to be served on a specific
output port before the packets of flow f; are transmitted. As
an example, let us consider the case of packets from a flow
with low priority, which are mapped to low-priority queues.
If forwarding devices implement a Strict Priority scheduling
policy with several queues, the effective queue occupancy seen
by those low-priority packets should include all the bits to be
served in the queues with higher priority.

The prediction of this effective queue occupancy — instead
of directly predicting delays — helps overcome the practical
limitation of producing out-of-distribution delay values with
the readout function Ry,. In this case, the values produced by
Ry, are bounded between 0 and the maximum buffer size at
output ports of forwarding devices, which is independent of
the network size.

Lastly, RouteNet-F produces flow-level delay predictions
9, by combining the estimated queueing and transmission
delays. The queueing delay ciq is indirectly estimated by
using the effective queue occupancies (in bits) on queues for
a particular flow. Particularly, queue occupancy values are
estimated by the readout function R, d(h%). Then, they are
divided by the capacity of the link connected to the output
port x;, to eventually produce a queuing delay estimate ch.
Likewise, the transmission delay dy is computed by dividing
the mean flow packet size xy,, by the link capacity z;,. With
this, RouteNet-F estimates the delay of a flow after passing
through a specific forwarding device and a link (cflmk):

. Ry, (hY)
dq _ fa\ltf1 (5)
X,
dy = o (6)
SL'lC
Czlink = Ciq + Czt (7)

Hence, we can compute end-to-end flow delays as the sum
of all the link delays dj;, along the flows (loop lines 20-26
in Algorithm 1).

III. ROUTENET-F IMPLEMENTATION FOR THE
GRAPH NEURAL NETWORKING CHALLENGE

We provide an implementation of RouteNet-F in
TensorFlow [6]. Note that participants of the Graph Neural
Networking challenge must keep the predefined values of this
implementation for training their own models.

In this implementation, we set the size of all hidden state
vectors (hy, hg, h;) to 32 elements, and the number of
message passing iterations to 7'=8. We implement FRN N,
LRNN, and U, as Gated Recurrent Units (GRU). Func-
tions HSy, HS, and HS; are implemented as 2-layer fully-
connected neural networks with 32 units and ReLLU activation
functions in each layer. Similarly, Ry, is implemented as a 3-
layer fully-connected neural network, each layer with 16 units.
Hidden layers implement a ReLU activation function, an the
output layer has a linear activation function.

The training is fixed to 20 epochs, with 2,000 steps per
epoch. Note that the training dataset must have a maximum
of 100 samples. Also, we set the Mean Absolute Percentage
Error (MAPE) as loss function, and use an Adam optimizer
with an initial learning rate of 0.001.

REFERENCES

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[2] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

(3]

(4]

(3]

(6]

L. Ruiz, L. Chamon, and A. Ribeiro, “Graph neural networks and the
transferability of graph neural networks,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring
the landscape of spatial robustness,” in International Conference on
Machine Learning, 2019, pp. 1802-1811.

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828-841, 2019.

C. Giiemes-Palau, M. Ferriol-Galmés et al., “Improving network
digital twins through data-centric ai,” https://github.com/BNN-UPC/
GNNetworkingChallenge/tree/2022_DataCentricAl, 2022.

https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2022_DataCentricAI
https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2022_DataCentricAI

	I Introduction
	II RouteNet-Fermi
	II-A Representing network components and their relationships
	II-B Scaling to larger networks: scale-independent features
	1 Higher link capacities
	2 Different flow-level delay distributions

	III RouteNet-F implementation for theGraph Neural Networking challenge
	References

